Since →b1 is parallel to →a
⇒→b1=λ→a⇒→b1=2λ^i−λ^j−2λ^k
Also, if
→b=→b1+→b2⇒7^i+2^j−3^k=2λ^i−λ^j−2λ^k+→b2⇒→b2=(7−2λ)^i+(2+λ)^j+(2λ−3)^k
It is given that
→b2⊥→a⇒(7−2λ)(2)+(2+λ)(−1)+(2λ−3)(−2)=0⇒14−4λ−2−λ−4λ+6=0⇒−9λ+18=0⇒λ=−2∴→b1=−4^i+2^j+4^k
→b2=11^i+0^j−7^k∴7^i+2^j−3^k=(−4^i+2^j+4^k)+(11^i+0^j−7^k)