If →a=2^i+^j+3^k and →b=3^i+5^j−2^k,then find ∣∣∣→a×→b∣∣∣.
Given tha →a=2^i+^j+3^k and →b=3^i+5^j−2^k we need to find |→a×→b||→a×→b|=∣∣ ∣ ∣∣^i^j^k21335−2∣∣ ∣ ∣∣=^i(−2−15)−^j(−4−9)+^k(10−3)=−17^i+13^j+7^kHence,∣∣∣→a×→b∣∣∣|=√172+132+72⇒∣∣∣→a×→b∣∣∣=√507