If →a and →b are unit vectors, then the greatest value of √3∣∣→a+→b∣∣+∣∣→a−→b∣∣ is
√3∣∣→a+→b∣∣+∣∣→a−→b∣∣
=√3(√2+2cosθ)+√2−2cosθ
=√6(√1+cosθ)+√2(√1−cosθ)
=√6(√1+2cos2θ2−1)+√2(√1−1+2sin2θ2)
=√6(√2cos2θ2)+√2(√2sin2θ2)
{greatest value of trigonometric function}acosθ+bsinθ≤√a2+b2
=2√3∣∣∣cosθ2∣∣∣+2∣∣∣sinθ2∣∣∣≤√(2√3)2+(2)2=4