If →a=^i+^j+2^k and →b=2^i+^j+2^k, then find the unit vector in the direction of 6 →b
Here, →a=^i+^j+2^k and →b=2^i+^j+2^k,
Since, 6→b=12^i+6^j−12^k
∴ Unit vector in the direction of 6→b=6→b|6→b|=12^i+6^j−12^k√122+62+122=6(2^i+^j−2^k)√324=6(2^i+^j−2^k)18=2^i+^j−2^k3