If →a=^i+^j+2^k and →b=2^i+^j−2^k, then find the unit vector in the direction of 2→a−→b
Since, 2→a−→b=2(^i+^j+2^k)−(2^i+^j−2^k)
=2^i+2^j+4^k−2^i−^j+2^k=^j+6^k∴ Unit vector in the direction of 2→a−→b=2→a−→b|2→a−→b|=^j+6^k√1+36=^j+6^k√37
If →a=^i+^j+2^k and →b=2^i+^j+2^k, then find the unit vector in the direction of 6 →b
For given vectors, a=2^i−^j+2^k and b=−^i+^j−^k, find the unit vector in the direction of the vector a+b.