If →a=^i+^j−2^k, then ∣∣(→a×^i)×^j∣∣2+∣∣(→a×^j)×^k∣∣2+∣∣(→a×^k)×^i∣∣2=
Open in App
Solution
⇒|(→a×^i)×^j|2=|(→a⋅^j)^i−(^i⋅^j)→a|2=|^i|2=1
Similarly, ⇒|(→a×^j)×^k|2=|(→a⋅^k)^j−(^k⋅^j)→a|2=|−2^j|2=4
Similarly ⇒|(→a×^k)×^i|2=|(→a⋅^i)⋅^k−(^i⋅^k)→a|2=|^k|2=1
Adding all above three cases, We get ⇒∣∣(→a×^i)×^j∣∣2+∣∣(→a×^j)×^k∣∣2+∣∣(→a×^k)×^i∣∣2=6