→a=→i−→j+7→k
→b=5→i−→j+λ→k
→a+→b=6→i−2→j+(7+λ)→k
→a−→b=−4→i−0→j+(7−λ)→k
Given →a+→b and →a−→b are perpendicular, then
→a+→b.→a−→b=0
(6→i−2→j+(7+λ)→k)×(−4→i−0→j+(7−λ)→k)=0
6(−4)+0(−2)+(7+λ)(7−λ)=0
−24+49−λ2=0
λ2=25
Squaring on both the sides, we get
λ=±5