Given :
|→a−→b|2+|→b−→c|2+|→c−→a|2=9⇒2(|→a|2+|→b|2+|→c|2)−2(→a⋅→b+→b⋅→c+→c⋅→a)=9
Since →a,→b and →c are unit vectors
⇒6−2(→a⋅→b+→b⋅→c+→c⋅→a)=9⇒→a⋅→b+→b⋅→c+→c⋅→a=−32⋯(i)
As, |→a+→b+→c|2≥0
⇒|→a|2+|→b|2+|→c|2+2(→a⋅→b+→b⋅→c+→c⋅→a)≥0⇒→a⋅→b+→b⋅→c+→c⋅→a≥−32
Since, →a⋅→b+→b⋅→c+→c⋅→a=−32
So, |→a+→b+→c|=0
⇒→a+→b+→c=→0⋯(ii)
⇒|2→a+5→b+5→c|=|2→a+5(−→a)|=3|→a|=3