wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a,b,c are mutually perpendicular vectors of equal magnitude, show that the vectors a+b+c is equally inclined to a,b and c.

Open in App
Solution

To prove:¯¯¯a+¯¯b+¯¯c is equally inclined to ¯¯¯a,¯¯band¯¯c.
Given:¯¯¯a.¯¯b=¯¯b.¯¯c=¯¯¯a.¯¯c=0
Angle between:¯¯¯a+¯¯b+¯¯cand¯¯¯a:
cosθ1=(¯¯¯a+¯¯b+¯¯c).¯¯¯a¯¯¯a+¯¯b+¯¯c.¯¯¯acosθ1=¯¯¯a2+¯¯¯a.¯¯b+¯¯¯a.¯¯c¯¯¯a+¯¯b+¯¯c.¯¯¯acosθ1=¯¯¯a2+0+0¯¯¯a+¯¯b+¯¯c.¯¯¯a=¯¯¯a¯¯¯a+¯¯b+¯¯c
Angle between ¯¯¯a+¯¯b+¯¯cand¯¯b
cosθ2=(¯¯¯a+¯¯b+¯¯c).¯¯b¯¯¯a+¯¯b+¯¯c.¯¯b=¯¯¯a.¯¯b+¯¯b2+¯¯b.¯¯c¯¯¯a+¯¯b+¯¯c.¯¯b=0+¯¯b2¯¯¯a+¯¯b+¯¯c.¯¯b=¯¯b¯¯¯a+¯¯b+¯¯c
Angle between ¯¯¯a+¯¯b+¯¯cand¯¯c:
cosθ3=(¯¯¯a+¯¯b+¯¯c).¯¯c¯¯¯a+¯¯b+¯¯c.¯¯c=¯¯¯a.¯¯c+¯¯b.¯¯c+¯¯c2¯¯¯a+¯¯b+¯¯c.¯¯c=0+0+¯¯c2¯¯¯a+¯¯b+¯¯c.¯¯c=¯¯c¯¯¯a+¯¯b+¯¯c¯¯¯a=¯¯b=¯¯c=p(let)cosθ1=cosθ2=cosθ3=p¯¯¯a+¯¯b+¯¯c
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon