Given :→p=→b×→c[→a →b →c],→q=→c×→a[→a →b →c],→r=→a×→b[→a →b →c],
⇒→a⋅→p=→a⋅(→b×→c)[→a →b →c]=1,→b⋅→p=→b⋅(→b×→c)[→a →b →c]=0,→c⋅→p=→c⋅(→b×→c)[→a →b →c]=0
(∵ scalar triple product is zero if two vectors are same.)
similarly,
→a⋅→q=→c⋅→q=0,→b⋅→q=1 and
→a⋅→r=→b⋅→r=0,→c⋅→r=1
Now,
(2→a+3→b+4→c)⋅→p+(2→b+3→c+4→a)⋅→q+(2→c+3→a+4→b)⋅→r=(2+0+0)+(2+0+0)+(2+0+0)=6