If →a,→b,→c be three non-coplanar uni-modular vectors each inclined with other at an angle of 60∘, then volume of the tetrahedron whose edges are →a,→b and →c is
A
4√2cubic units
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
16√2cubic units
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1√2cubic units
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
6√2cubic units
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A4√2cubic units Volume of tetrahedron with edges →a,→b,→c is v=16[→a→b→c] ⇒v2=136[→a→b→c]2 =136∣∣
∣
∣
∣∣→a.→a→a.→b→a.→c→b.→a→b.→b→b.→c→c.→a→c.→b→c.→c∣∣
∣
∣
∣∣ =136∣∣
∣
∣
∣
∣
∣∣112121211212121∣∣
∣
∣
∣
∣
∣∣ =136[1(1−14)−12(12−14)+12(14−12)] =136[4−14−12(2−14)+12(1−24)] =136[34−18−18] =136[34−14]=136×24=136×2 ∴v=16√2cubic unit