If →a,→b,→c,→d are non-zero vectors satisfying →a=→b+→c,→b×→d=→0 and →c⋅→d=0 , then →d×(→a×→d)|→d|2 is always equal to
Given →a=→b+→c ⋯(i)
→b×→d=→0,→c⋅→d=0
Taking cross product of →d in (i), we get
⇒→a×→d=→b×→d+→c×→d=→c×→d
(∵→b×→d=→0)
Now ⇒→d×(→a×→d)=→d×(→c×→d)
=(→d⋅→d)→c−(→c⋅→d)→d=|→d|2→c(∵→c⋅→d=0)∴→c=→d×(→a×→d)|→d|2