Given,
→a=ˆi+ˆj+ˆk and →b=ˆj−ˆk
Let →c=xˆi+yˆj+zˆk
Then, →a×→c=→b
∣∣
∣
∣∣ˆiˆjˆk111xyz∣∣
∣
∣∣=ˆj−ˆk
ˆi(z−y)−ˆj(z−x)+ˆk(y−x)=ˆj−ˆk
On comparing the coefficients of ˆi,ˆj and ˆk from both sides, we get,
z−y=0 .......(1)
x−z=1 .......(2)
And, x−y=1 .......(3)
Also, →a.→c=3
(ˆi+ˆj+ˆk).(xˆi+yˆj+zˆk)=3
x+y+z=3 ......(4)
On adding equation 2 and 3, we get,
2x−y−z=2 ........(5)
On adding equation 4 and 5, we get,
x=53
Then, y=23 and z=23
Hence, →c=13(5ˆi+2ˆj+2ˆk)