The correct option is D −24
∣∣∣→b∣∣∣2=∣∣→c∣∣2=9x2+y2+4z2
∠(→a.→b)=∠(→a.→c)
⇒→a.→b=→a.→c
⇒xy−2yz+3zx=2zx+3xy−yz
⇒2xy+yz−zx=0 ...........(1)
→a.→d=0
⇒x−y+2z=0 ...........(2)
Eliminating y from (1),(2), we get
From (1)2xy=zx−yz=(x−y)z
From (2)x−y=−2z
⇒2xy=(−2z)z
⇒2xy=−2z2
⇒xy=−z2
⇒xy=−z2 ...........(3)
Again we have From (2)y=x+2z
Substituting y=x+2z in (1) we get
2xy+yz−zx=0
⇒2x(x+2z)+(x+2z)z−zx=0
(x+2z)(2x+z)−zx=0
⇒2x2+4xz+zx+2z2−zx=0
⇒2x2+4xz+2z2−zx=0
⇒x2+2xz+zx+z2=0
⇒(x+z)2=0
⇒z=−x
From (3)xy=−2z2
⇒xy=−2(x2)
⇒xy=−(x2)
∴y=−x
∣∣→a∣∣=√x2+y2+z2
=√x2+x2+x2=x√3
Given∣∣→a∣∣=2√3=x√3
⇒x=2,y=−2,z=−2
x2+y2+z2=22+22+22=12
⇒3x2=12
⇒x2=4
∴x=±2
⇒(x,y,z)=(2,−2,−2)=(−2,2,2)
→a.→b=xy−2yz+3zx
=−4−8−12=−24