If →c=x^i+y^j+z^k is the internal angle bisector between →a=2^i−^j+^k and →b=^i+2^j−^k and |→c|=√40. Then the value of (x+y+z)=
Open in App
Solution
Given vectors : →a=2^i−^j+^k and →b=^i+2^j−^k
internal angle bisector is given by, →c=λ(^a+^b)=λ(2^i−^j+^k√6+^i+2^j−^k√6)⇒→c=λ⋅3^i+^j√6
Since, |→c|=√40 ⇒10λ26=40⇒λ=2√6∴→c=6^i+2^j⇒(x+y+z)=8