If →d is a unit vector such that →d=λ→b×→c+μ→c×→a+ν→a×→b then ∣∣∣(→d⋅→a)(→b×→c)+(→d⋅→b)(→c×→a)+(→d⋅→c)(→a×→b)∣∣∣ is equal to
A
∣∣[→a→b→c]∣∣
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3∣∣[→a→b→c]∣∣
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A∣∣[→a→b→c]∣∣ →d.→a=λ[→a→b→c] →d.→b=μ[→c→a→b]=μ[→a→b→c] →d.→c=ν[→a→b→c] Thus, the equation becomes [→a→b→c]|λ(→b×→c)+μ(→c×→a)+ν(→a×→b)| =[→a→b→c]|→d| =[→a→b→c]