If →E=−(2y3−3yz2)^x−(6xy2−3xz2)^y+(6xyz)^z is the electric field in a source free region, a valid expression for the electrostatic potential is
Ans : (d)
E=−∂V∂x^ax−∂V∂y^ay−∂V∂Z^az
∂V∂x=2y2−3yz2V=2xy3−3xyz2+K1
∂V∂y=6xy2−3xz2V=2xy3−3xyz2+K2
∂V∂z=−6xyzV=−3xyz2+K3
Comparing all three for uniqueness solution of potential
K1=K2=0K3=2xy3
→E=−(2y3−3yz2)^x−(6xy2−3xz2)^y+(6xyz)^z
as we know that E=−∇V
E=−(∂∂x^x+∂∂y^y+∂∂z^z)V ... (i)
Clearly option (d) satisfies the given relation.