The correct option is C 2√3(^i+^j+^k)
Let r=x^i+y^j+z^k.
Scalar product of a vector with a unit vector of x, y and z axis gives us the magnitude of vector in x, y and z direction i.e. the value of x, y and z.
Since, →r.^i=→r.^j=→r.^k⇒x=y=z……(i)
Also,
|r|=2=√x2+y2+z2=√x2+x2+x2√3x2=2√3x=2x=2√3
Hence the required vector,
→r=2√3(^i+^j+^k)