Given : 2→V+→V×(^i+2^j)=2^i+^k ⋯(1)
Taking dot product with ^i+2^j on both sides, we get
2→V⋅(^i+2^j)+→0=(2^i+^k)⋅(^i+2^j)⇒2→V⋅(^i+2^j)=2⇒→V⋅(^i+2^j)=1⇒|→V|∣∣(^i+2^j)∣∣cosθ=1⇒|→V|=1√5cosθ ⋯(2)
Now, using equation (1), we get
|2→V+→V×(^i+2^j)|2=|2^i+^k|2⇒4|→V|2+|→V×(^i+2^j)|2+4→V⋅(→V×(^i+2^j))=5⇒4|→V|2+|→V|2∣∣^i+2^j∣∣2sin2θ=5⇒|→V|2[4+5sin2θ]=5⇒4+5(1−cos2θ)5cos2θ=5⇒cos2θ=930
From equation (2), we get
|→V|2=15cos2θ⇒|→V|2=69∴9|→V|2=6