wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If V is a 3dimensional vector satisfying 2V+V×(^i+2^j)=2^i+^k, then the value of 9|V|2 is

Open in App
Solution

Given : 2V+V×(^i+2^j)=2^i+^k (1)

Taking dot product with ^i+2^j on both sides, we get
2V(^i+2^j)+0=(2^i+^k)(^i+2^j)2V(^i+2^j)=2V(^i+2^j)=1|V|(^i+2^j)cosθ=1|V|=15cosθ (2)

Now, using equation (1), we get
|2V+V×(^i+2^j)|2=|2^i+^k|24|V|2+|V×(^i+2^j)|2+4V(V×(^i+2^j))=54|V|2+|V|2^i+2^j2sin2θ=5|V|2[4+5sin2θ]=54+5(1cos2θ)5cos2θ=5cos2θ=930

From equation (2), we get
|V|2=15cos2θ|V|2=699|V|2=6

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Dot Product
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon