→a=2^i−3^j+^k, →b=^i+^k, →c=2^j−^k are three vectors
→a+→b=3^i−3^j+2^k
→b+→c=^i+2^j
If →d1,→d2 are two diagonals of a parallelogram
then area is 12∣∣→d1×→d2∣∣
since →a+→b,→b+→c are diagonals
12∣∣
∣
∣∣^i^j^k3−32120∣∣
∣
∣∣=12∣∣(−4^i+2^j+9^k)∣∣
∴ Area = 12√101