If p1 and p2 are the lengths of the perpendiculars from the origin upon the lines x sec θ+y cosec θ=a and x cos θ−y sin θ=a cos 2 θ respectively, then
4p21+p22=a2
The given lines are
x secθ+y cosecθ=a ...(1)
x cosθ−y sin θ=a cos 2θ ...(2)
p1 and p2 are the perpendicular from the origin upon the lines (1) and (2), respectively.
⇒ p1=∣∣∣−a√sec2 θ+cosec2 θ∣∣∣ and p2=∣∣∣−acos 2θ√cos2 θ+sin2 θ∣∣∣
⇒ p1=∣∣∣asin θ cos θ√sin2 θ+cos2 θ∣∣∣ and p2=|−acos 2θ|
⇒ p1=12|−a×2 sin θ cos θ| and p2=|−a cos 2θ|
⇒ 4p21+p22=a2 (sin2 2θ+cos2 2θ)=a2