If p1,p2,p3 are lengths of perpendiculars from points (m2,2m) , (mm′,m+m′) and (m′2,2m′) to the line xcosα+ysinα+sin2αcosα=0 then p1,p2,p3 are in
A
A.P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
G..P.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
H.P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
A.G..P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C G..P. p1=|m2cosα+2msinα+sin2αcosα| ⇒p1=(mcosα+sinα)2cosα ---------(1) p2=|mm′cosα+(m+m′)sinα+sin2αcosα| p2=(mm′cos2α+(m+m′)sinαcosα+sin2α)cosα ------------( 2) p3=|m′2cosα+2m′sinα+sin2αcosα| ⇒p3=(m′cosα+sinα)2cosα ------------(3) Now taking square root of equation 1 & 3 and multiplying them,
√p1√p3=(mcosα+sinα)√cosα(m′cosα+sinα)√cosα ⇒√p1√p3=(mm′cos2α+(m+m′)sinαcosα+sin2α)cosα ⇒p1p3=p22 Hence, p1,p2,p3 are in G.P.