wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If p1,p2,p3 are respectively the lengths of perpendiculars from the vertices of a triangle ABC to the opposite sides then
(i) cosAp1+cosBp2+cosCp3=1R
(ii) bp1c+cp2a+ap3b=a2+b2+c22R.

A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A True
Refer to the figure.

segADsegBC
segBEsegAC
segCFsegAB

Let p1 = length of seg AD

p2 = length of seg BE

p3 = length of seg CF

1) Now, Area of ABC = =12×b×h

=12×p1×a

=12×p2×b

=12×p3×c

Thus, 12×p1×a=12×p2×b=12×p3×c=

p1=2a

p2=2b

p3=2c

Thus, cosAp1+cosBp2+cosCp3

=cosA(2a)+cosB(2b)+cosC(2c)

=acosA2+bcosB2+ccosC2

=acosA+bcosB+ccosC2

=12[asinAcosAsinA+bsinBcosBsinB+csinCcosCsinC]

=1[(a2sinA)sinAcosA+(b2sinB)sinBcosB+(c2sinC)sinCcosC]

=1[RsinAcosA+RsinBcosB+RsinCcosC]
where, R = radius of circumcircle of triangle.

=R2[2sinAcosA+2sinBcosB+2sinCcosC]

=R2[sin2A+sin2B+sin2C]

=R2[2sin(2A+2B2)cos(2A2B2)+sin2C]

=R2[2sin(A+B)cos(AB)+2sinC.cosC]

=R2[2sin(πC)cos(AB)+2sinC.cosC]

=R2[2sinCcos(AB)+2sinC.cosC]

=R2[2sinC(cos(AB)+cosC)]

=R2[2sinC(cos(AB)+cos(π(A+B)))]

=R2[2sinC(cos(AB)cos(A+B))]

=R2[2sinC(2sinAsinB)]

=R2[4sinAsinBsinC] (1)

Now, =abc4R
=abc4(a2sinA)

=sinA.abc2a

=sinA.bc2

sinA=2bc

Similarly, sinB=2ac and sinC=2ab

From equation (1),

=R2[42bc×2ac×2ab]

=16R2a2b2c2

=16R2(abc)2

=16R2(4R)2

=16R216R22

=1R

2) LHS=bp1c+cp2a+ap3b

=b(2)ac+c(2)ab+a(2)bc

=2[b2+c2+a2abc]

=2(abc4R)[b2+c2+a2abc]

=a2+b2+c22R

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Operations
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon