If p1,p2,p3 be the perpendicular from the points (α2,2α)(αβ,α+β) and (β2,2β) respectively on the line xcosθ+ysinθ+sin2θcosθ=0 ,then p1,p2,p3 are in:
A
A.P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
G.P.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
H.P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of the above
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C G.P. Using distance formula ∣∣∣ax1+by1+c√a2+b2∣∣∣ P1=α2cosθ+2αsinθ+sin2θcosθ√sin2θ+cos2θ=α2cosθ+2αsinθ+sin2θcosθ=α2cos2θ+2αsinθcosθ+sin2θcosθ=(xcosθ+sinθ)2cosθ......(1) similarly, P3=(βcosθ+sinθ)2cosθ........(2) And, P2=αβcosθ+(α+β)sinθ+sin2θcosθ√sin2θ+cos2θ=αβcos2θ+αsinθcosθ+βsinθcosθ+sin2θcosθ=αcosθ[βcosθ+sinθ]+sinθ[βcosθ+sinθ]cosθ=(αcosθ+sinθ)(βcosθ+sinθ)cosθ........(3) From (1),(2) and (3) P1×P3=P22P1,P2,P3←GP