wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If p1,p2,p3 be the perpendicular from the points (α2,2α)(αβ,α+β) and
(β2,2β) respectively on the line xcosθ+ysinθ+sin2θcosθ=0 ,then p1,p2,p3 are in:

A
A.P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
G.P.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
H.P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of the above
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C G.P.
Using distance formula ax1+by1+ca2+b2
P1=α2cosθ+2αsinθ+sin2θcosθsin2θ+cos2θ=α2cosθ+2αsinθ+sin2θcosθ=α2cos2θ+2αsinθcosθ+sin2θcosθ=(xcosθ+sinθ)2cosθ......(1)
similarly,
P3=(βcosθ+sinθ)2cosθ........(2)
And,
P2=αβcosθ+(α+β)sinθ+sin2θcosθsin2θ+cos2θ=αβcos2θ+αsinθcosθ+βsinθcosθ+sin2θcosθ=αcosθ[βcosθ+sinθ]+sinθ[βcosθ+sinθ]cosθ=(αcosθ+sinθ)(βcosθ+sinθ)cosθ........(3)
From (1),(2) and (3)
P1×P3=P22P1,P2,P3GP

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 7
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon