If P1Q1&P2Q2 or are two focal chords of y2=4ax, then the chord P1P2&Q1Q2 intersect on
Let P1=(at21,2at1), Q1=(at21,−2at1) and P2=(at22,2at2),
Q2=(at22,−2at2) be the coordinates of the focal chord of the parabola y2=4ax
Equation of the chord P1P2 is
y(t1+t2)=2x+2at1t2
∴y(t1+t2)−2x−2at1t2=0 .......(1)
Equation of the chord Q1Q2 is
y(−1t1+(−1t2))=2x+2a−1t1−1t2
−y(t1+t2t1t2)−2x−2at1t2
∴y(t1+t2)+2xt1t2+2a=0 .........(2)
Subtracting eqn(2) from eqn(1) we get
2x(t1t2+1)+2a(t1t2+1)=0
⇒2(x+a)(t1t2+1)=0
∴x+a=0 is the directrix of the parabola where the line P1P2 and Q1Q2 intersect.