wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If p2=a2cos2θ+b2sin2θ then Prove That:

P+d2pdθ2=a2b2p3

Open in App
Solution

We have,

p2=a2cos2θ+b2sin2θ........(1)

On differentiating and we get,

2pdpdθ=a2(2cosθsinθ)+b2(2sinθcosθ)

2pdpdθ=a2sin2θ+b2sin2θ

2pdpdθ=(a2+b2)sin2θ

pdpdθ=(a2+b2)2sin2θ

pdpdθ=(a2+b2)2sin2θ.......(2)

Again differentiating and we get,

pd2pdθ2+dpdθdpdθ=(a2+b2)22cos2θ

pd2pdθ2+(dpdθ)2=(a2+b2)22cos2θ

pd2pdθ2=(a2+b2)22cos2θ(dpdθ)2

Put the value of dpdθ by equation (1)

pd2pdθ2=(a2+b2)22cos2θ(dpdθ)2

pd2pdθ2=(a2+b2)22cos2θ⎢ ⎢(a2+b2)2sin2θp⎥ ⎥2

pd2pdθ2=(a2+b2)22cos2θ⎢ ⎢ ⎢(a2+b2)24sin22θp2⎥ ⎥ ⎥

d2pdθ2=(a2+b2)22cos2θ⎢ ⎢ ⎢(a2+b2)24sin22θp2⎥ ⎥ ⎥p

d2pdθ2=4p2(a2+b2)cos2θ(a2+b2)2sin22θ4p3

L.H.S.

p+d2pdθ2=a2cos2θ+b2sin2θ+4p2(a2+b2)cos2θ(a2+b2)2sin22θ4p3

On solving that,

p+d2pdθ2=a2b2p3

Hence, this is the answer..


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon