We have,
p2=a2cos2θ+b2sin2θ........(1)
On differentiating and we get,
2pdpdθ=a2(−2cosθsinθ)+b2(2sinθcosθ)
2pdpdθ=−a2sin2θ+b2sin2θ
2pdpdθ=(−a2+b2)sin2θ
pdpdθ=(−a2+b2)2sin2θ
pdpdθ=(−a2+b2)2sin2θ.......(2)
Again differentiating and we get,
pd2pdθ2+dpdθdpdθ=(−a2+b2)22cos2θ
pd2pdθ2+(dpdθ)2=(−a2+b2)22cos2θ
pd2pdθ2=(−a2+b2)22cos2θ−(dpdθ)2
Put the value of dpdθ by equation (1)
pd2pdθ2=(−a2+b2)22cos2θ−(dpdθ)2
pd2pdθ2=(−a2+b2)22cos2θ−⎡⎢ ⎢⎣(−a2+b2)2sin2θp⎤⎥ ⎥⎦2
pd2pdθ2=(−a2+b2)22cos2θ−⎡⎢ ⎢ ⎢⎣(−a2+b2)24sin22θp2⎤⎥ ⎥ ⎥⎦
d2pdθ2=(−a2+b2)22cos2θ−⎡⎢ ⎢ ⎢⎣(−a2+b2)24sin22θp2⎤⎥ ⎥ ⎥⎦p
d2pdθ2=4p2(−a2+b2)cos2θ−(−a2+b2)2sin22θ4p3
L.H.S.
p+d2pdθ2=√a2cos2θ+b2sin2θ+4p2(−a2+b2)cos2θ−(−a2+b2)2sin22θ4p3
On solving that,
p+d2pdθ2=a2b2p3