wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If p=2sinθ(1+cosθ+sinθ)and q=cosθ(1+sinθ), then


A

pq=1

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

qp=1

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

qp=1

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

q+p=1

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D

q+p=1


Explanation for the correct option.

Step 1: Solve for p.

Given,p=2sinθ(1+cosθ+sinθ)

Multiply in numerator and denominator by 1(cosθ+sinθ)

p=2sinθ(1+cosθ+sinθ)×[1(cosθ+sinθ)]1(cosθ+sinθ)=2sinθ[1(cosθ+sinθ)][1(cosθ+sinθ)2]=2sinθ[1(cosθ+sinθ)][1(cos2θ+sin2θ+2cosθsinθ)]=[1(cosθ+sinθ)]-cosθ[sin2θ+cos2θ=1andcancellingoutcommonfactor]=cosθ+sinθ-1cosθ.....(1)

Step 2: Solve for q.

Now solve q=[cosθ(1+sinθ)]

Multiply numerator & denominator by 1-sinθ we have:

q=[cosθ(1+sinθ)]×(1-sinθ)(1-sinθ)=cosθ(1-sinθ)(1-sin2θ)[a+ba-b=a2-b2]=cosθ(1-sinθ)cos2θ[1-sin2θ=cos2θ]=(1-sinθ)cosθ....(2)

Step 3: Find p+q

Adding equation (1) & (2) we get;

p+q=cosθ+sinθ-1cosθ+1-sinθcosθ=cosθ+sinθ-1+1-sinθcosθ=1

Therefore, q+p=1.

Hence, option D is correct.


flag
Suggest Corrections
thumbs-up
56
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon