The correct option is
A −12The equation of the parabola is y2+4y+4=−4(x−1)⇒(y+2)2=−4(x−1)
Compairing with general equation (y−k)2=4a(x−h)
ie, vertex=(h,k)=(1,−2),
focal point=(h+a,k)=(1−1,−2)=(0,−2)
P(at21+h+,2at1+k)=P(−3,2)⇒t1=−2
ie, t2=(12)
⇒Q(at22+h,2at2+k)=Q(−(12)2+1,2−12−2)=Q(34,−3)
On differentiating the equation,
2ydydx+4dydx=−4
Slope of the normal of the equation=−dxdy=2y+44
Then Slope of the normal at Q(34,−3)=2y+44](34,−3)=−24=−12
So, Option A is correct.