The correct option is D Minimum value of P occurs when sinx=−1
P=4sinx+cos2x⇒P=4sinx+(1−sin2x)
Assuming sinx=t⇒t∈[−1,1]
P=4t+1−t2⇒f(t)=−(t−2)2+5, t∈[−1,1]
x coordinate of vertex is 2 and 2∉[−1,1]
f(1)=4
f(−1)=−4
⇒ The mimimum value of P is −4 at sinx=−1
⇒ The maximum value of P is 4 at sinx=1
Alternate Solution:
P=4sinx+cos2x⇒P=4sinx+(1−sin2x)⇒P=−(sin2x−4sinx+4)+5
⇒P=5−(sinx−2)2
−1≤sinx≤1⇒−3≤sinx−2≤−1⇒1≤(sinx−2)2≤9⇒−9≤−(sinx−2)2≤−1⇒−4≤5−(sinx−2)2≤4⇒−4≤P≤4
P=4⇒5−(sinx−2)2=4⇒sinx−2=±1⇒sinx=1 (∵sinx≠3)
P=−4⇒5−(sinx−2)2=−4⇒sinx−2=±3⇒sinx=−1 (∵sinx≠5)
The mimimum value of P is −4 when sinx=−1.
The maximum value of P is 4 when sinx=1.