It is given that, P( A|B )>P( A ) .
Apply the formula for conditional probability.
P( A|B )>P( A ) P( A∩B ) P( B ) >P( A ) P( A∩B )>P( A )⋅P( B ) P( A∩B ) P( A ) >P( B ) Further, simplify the above inequality.
P( B|A )>P( B ) Thus, out of all the four options, option (C) is correct.
If P (A|B) > P (A), then which of the following is correct:
(A) P (B|A) < P (B) (B) P (A ∩ B) < P (A).P (B)
(C) P (B|A) > P (B) (D) P (B|A) = P (B)