If P(A∪B)=P(A∩B) for any two events A and B. then
P(A)=P(B)
We know that,
P(A∪B)+P(B)−P(A∩B)
⇒P(A∩B)=P(A)+P(B)−P(A∩B)
[P(A∪B)=P(AcapB)]
⇒P(A)−P(a∩B)+P(B)−P(A∩B)=0 ....... (1)
But,
P(A)−P(A∩B)≥0
P(B)−P(A∩B)≥0
⇒P(A)−P(A∩B)+p(B)−P(A∩B)≥0 ..... (2)
From (1) and (2), we have
P(A)−P(A∩B) and P(B)−P(A∩B)=0
⇒P(A)=P(A∩B) and P(B)=P(A∩B)
P(A)=P(B)
Hence, the correct answer is option (a).