The given probabilities are,
P( A )= 6 11 , P( B )= 5 11 and P( A∪B )= 7 11 .
(i)
The probability ( A∩B ) can be calculated as,
P( A∩B )=P( A )+P( B )−P( A∪B ) = 6 11 + 5 11 − 7 11 =1− 7 11 = 4 11
Therefore, the value of P( A∩B )= 4 11 .
(ii)
The probability P( A|B ) is calculated as,
P( A|B )= P( A∩B ) P( B ) = 4 11 5 11 = 4 5
Therefore, the value of P( A|B )is 4 5 .
(iii)
The probability P( B|A ) is calculated as,
P( B|A )= P( A∩B ) P( A ) = 4 11 6 11 = 4 6 = 2 3
Therefore, the value of P( B|A )is 2 3 .