The roots f
x2+px+q=0 will be imaginary if and only if
p2−4q<0, i.e.,
p2<4qWe enumerate the possible values of p and q for which this can happen in Table
q
| p
| Number of pairs of p, q
|
1
| 1
| 1
|
2
| 1, 2
| 2
|
3
| 1, 2, 3
| 3
|
4
| 1, 2, 3
| 3
|
5
| 1, 2, 3, 4
| 4
|
6
| 1, 2, 3, 4
| 4
|
7
| 1, 2, 3, 4, 5
| 5
|
8
| 1, 2, 3, 4, 5 | 5
|
9
| 1, 2, 3, 4, 5 | 5
|
10
| 1, 2, 3, 4, 5, 6
| 6
|
Total
|
| 38
|
Thus, the number of possible pairs
=38. Also, the total number of possible pairs is
10×10=100.
A) Probability for imaginary roots
P=0.38B)The roots of
x2+px+q=0 will be equal if and only if
p2−4q=0.
The possible pairs of (p, q) are (2, 1), (4, 4), (6, 9).
Thus, probability for equal roots
P=0.03.
C) Probability for real roots
P=0.62D) As p > 0, q > 0, roots of
x2+px+q=0 are negative if these are real.
i.e probability is
P=0.62