The correct option is
B a2Given lines
xsecθ+ycscθ=a−−−−(1)
xcosθ−ysinθ=acos2θ−−−−(2)
On comparing both equation with ax+by+c=0 we get
a1=secθ,b1=cscθ,c=−a
a2=cosθ,b2=−sinθ,c=−acos2θ
p is the length of perpendicular from origin to line xsecθ+ycscθ=a
By perpendicular distance formula p=∣∣∣ax1+by1+c√a2+b2∣∣∣
p=∣∣∣0+0−a√sec2θ+csc2θ∣∣∣
p=∣∣
∣
∣
∣
∣
∣∣−a√1cos2θ+1sin2θ∣∣
∣
∣
∣
∣
∣∣
p=a√sin2θ+cos2θsin2θcos2θ
But sin2θ+cos2θ=1
p=asin2θ2
q is the length of perpendicular from origin to line xcosθ−ysinθ=acos2θ
By perpendicular distance formula q=∣∣∣ax1+by1+c√a2+b2∣∣∣
q=∣∣
∣∣−acos2θ√sin2θ+cos2θ∣∣
∣∣
q=acos2θ1
q=acos2θ
4p2+q2=4(asin2θ2)2+(acos2θ)2
4p2+q2=4(a2sin22θ4)+a2cos22θ
4p2+q2=a2sin22θ+a2cos22θ
4p2+q2=a2(sin22θ+cos22θ)
4p2+q2=a2