If p and q are positive integers, f is a function defined for positive numbers and attains only positive values such that f(xf(y))=xpyq, then prove that q=p2., if p=2 find the value of q
Open in App
Solution
For x=1f(y), we have f(x.1x)=1f(y)p.yq⇒f(1)=yq{f(y)}p ⇒f(y)=yq/p{f(1)}1/p For y=1, we have f(1)=1 ∴f(y)=yq/p or f(x)=xq/p (i) Hence, f(x.yq/p)=xp.yq Let yq/p=z⇒y=zp/q ⇒f(x,z)=xpzp or f(x)=xp (ii) From Eqs. (i) and (ii), we have xq/p=xp ⇒qp=p or q=p2