If p and q are the length of perpendiculars from the origin to the lines x cos θ−y sin θ=k cos 2θ and x sec θ+y cosec θ=k respectively, prove that p2+4q2=k2
Length of perpendicular from origin to line x cos θ−y sin θ−k cos 2θ=0 is
p=∣∣∣0×cos θ−0×sin θ−k cos 2θ√cos2θ+sin2θ∣∣∣
=∣∣−k cos 2θ1∣∣=k cos 2θ
Length of perpendicular from origin to line x sec θ+y cosec θ−k=0 is
q=∣∣∣0×sec θ+0×cosec θ−k√sec2θ+cosec2θ∣∣∣
=∣∣ ∣ ∣∣−k√sin2θ+cos2θsin2θcos2θ∣∣ ∣ ∣∣
=|−k sin θ cos θ|=k2 sin 2θ
Now
p2+4q2=(k cos 2θ)2+4(k2 sin 2θ)2
=k cos2 2θ+44k2 sin22θ
=k2(cos22θ+sin22θ)=k2