If p and q are the lengths of perpendicular from the origin to the lines x cos θ−y sin θ=k cos 2θ and x sec θ+y cosec θ=k, respectively.
Prove that p2+4q2=k2
p =Length of perpendicular from origin (0, 0) to the line x cos θ−y sin θ−k cos 2θ=0
Then, p=|0.cos θ+0.(−sin θ)−k cos 2θ|√cos2θ+sin2θ
[ ∵ the perpendicular distance from (x1, y1) to the line ax + by + c = 0 isax1+by1+c√a2+b2]
∴ p = k cos 2θ . . . (i)
and q = Length of perpendicular from origin (0, 0) to the line x sec θ+y cosec θ−k=0
Then, q=|0.secθ+0.cosecθ−k|√sec2θ+cosec2θ
=x√1cos2θ+1sin2θ=k√sin2θ+cos2θsin2θ.cos2θ
=k.sin θ cos θ1 [∵ sin2θ+cos2θ=1]
=k2×2 sin θ cos θ
=k2 sin 2θ [∵ 2 sin θ cos θ=sin 2θ]
∴ 2q=k sin 2θ . . .(ii)
On squaring Eqs. (i) and (ii) and then adding, we get
p2+4q2=k2 cos2 2θ+k2sin22θ
⇒ p2+q2=k2(cos22θ+sin22θ)
∴ p2+4q2=k2 [∵ cos2θ+sin2θ=1]