The correct option is D 340
Given hyperbola: x25−y28=1 …(1)
Centre: C(0,0)
Let P(x1,y1),Q(x2,y2) be two points on the hyperbola.
Let equation of CP be y=mx …(2)
Solving (1) and (2), we get
x25−m2x28=1
⇒x2=408−5m2=x21
⇒y2=m2x2⇒40m28−5m2=y21
Now, CP2=x21+y21=40(1+m2)8−5m2
⇒1CP2=8−5m240(1+m2) …(3)
Similarly, 1CQ2=8m2−540(m2+1) …(4)
(∵CP⊥CQ , replacing m with −1m)
∴1CP2+1CQ2=3m2+340(m2+1)=340