If P and x are real, then e2πcot−1x(1+ixix−1)p=
1
p
eix
None
Let cot−1x=θ.Then tanθ=1x
∴e2icot−1x=e2iθ=cos2θ+isin2θ
Let = 1−tan2θ1+tan2θ+i2tanθ1+tan2θ=x2−1x2+1+2x1+x2i
= (x+i)2(x+i)(x−i)=x+ix−i=ix−1ix+1
∴e2picot−1x(ix+1ix−1)p=(ix−1ix+1)p(ix+1ix−1)p=1
p2 - 1 =
If 1−ix1+ix=a+ib,then a2+b2=