If P=⎡⎢
⎢
⎢⎣√3212−12√32⎤⎥
⎥
⎥⎦,A=[1101] and Q=PAPT then P(Q2005)PT equal to
We have,
PTP=1
⇒PT=P−1
Now,
Q=PAPT
So,
PQ2005PT=[(PAPT)(PAPT)......2005times]PT
=(PTP)A(PTP)A(PTP)A.......(PTP)A(PTP)=I.A2005
⇒I.A2005=A2005
Now,
A=[1101]
A2=[1201]
A3=[1301]
.......
A2005=[1200501]