If P=[√3/21/2−1/2√3/2],A=[1101] and Q=PAPT, then PTQ2005P is
A
[1200501]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
[1200520051]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
[1020051]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
[1001]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A[1200501] Now, PTP=[√3/2−1/21/2√3/2]=[√3/21/2−1/2√3/2]⇒PTP=[1001]⇒PTP=1⇒PT=P−1SinceQ=PAPT∴PTQ2005P=PT[(PAPT)(PAPT)...2005times]P=(PTP)A(PTP)A(PTP)...(PTP)A(PTP)2005times=IA2005=A2005∴A=[1101]A2=[1101][1101]=[1201]A3=[1201][1101]=[1301]................................................................A2005=[1200501]∴PTQ2005P=[1200501]