If pcotθ=√q2−p2, then the value of sinθ is
0
Given, pcotθ=√q2−p2
⇒cotθ=√q2−p2p
∵cosec2θ=1+cot2θ⇒cosec2θ=1+q2−p2p2 =q2p2
Hence, cosecθ=qp ∵sinθ=1cosecθ
∴sinθ=pq
If p cotθ = √q2−p2, then the value of sinθ is ___.
If p cotθ=√q2−p2, then the value of sinθ is___.
If p cotθ = √q2−p2 where θ is an acute angle , then the value of sinθ is___.