p−q=(2−√5)(2+√5)–(2+√5)(2−√5)
So by rationalizing the denominator, we get
=[(2–√5)2–(2+√5)2][22–(√5)2]
=[4+5–4√5–(4+5+4√5)][4–5]
=[9–4√5–9–4√5]−1
=[−8√5]−1
=8√5