If P is any point on the hyperbola whose axis are equal, prove that SP.SP=CP2
Equation of the hyperbola:
x2a2−y2b2=1
If the axes of the hyperbola are equal,then a=b
Then equation of the hyperbola becomes
x2−y2=a2 ∴b2=a2(e2−1)
⇒a2=a2(e2−1)
⇒1=(e2−1)
⇒e2=2
⇒e=√2
Thus,the centre C(0,0) and the focus are given by X(√2a,0)and S′)(−√2a,0),respectively.
Let P(α,β)be any point on the parabola.
So,it will satisfy the equation.
α2−β2=a2
∴SP2=(√2a−α)2+β2
=2a2+α2−2√2aα+β
S′P2=(−√2 a−α)2+β2
=2a2+α2+2√2 aα+β
Now,SP2,S′P2=(2a2+α2−2√2aα+β)(2a2+α2+2√2 aα+β2)
=4a4+4a2(α2+β2)+(α2+β2)2−8a2α2
=4a2(a2−2α2)+4a2(α2+β2)+(α2+β2)2
=4a2(α2−β2−2α2)+4a2(α2+β2)+(α2+β2)2
=4a2(a2−2α2)+4a2(α2+β2)+(a2+β2)2
=4a2(α2+β2−2α2)+4a2(α2+β2)+(α2+β2)2
=−4a2(a2+b2)+4a2(α2+β2)+(α2+β2)2
=(α2+β2)2
=CP4
∴SP.S′P=CP2