If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that 1p2=1a2+1b2
The given line is xa+yb=1.
⇒ bx+ay=ab⇒bx+ay−ab=0
Now p is the length of perpendicular from origin to bx + ay - ab = 0
∴p=∣∣∣b×0+a×0−ab√b2+a2∣∣∣=ab√b2+a2
⇒ p2=a2b2b2+a2 ⇒ 1p2=b2+a2a2b2
⇒ 1p2=b2a2b2+a2a2b2⇒1p2=1a2+1b2