If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b then show that 1p2=1a2+1b2
1p2=1a2+1b2
xa+yb=1, i.e.xa+yb−1=0
p =∣∣ ∣∣1a×0+1b×0−1√1a2+1b2∣∣ ∣∣
= |−1|√1a2+1b2=1√1a2+1b2
⇒p2=1(1a2+1b2)=a2b2(b2+a2)
⇒1p2=(b2+a2)a2b2=(b2a2b2+a2a2b2)=(1a2+1b2)
1p2=1a2+1b2