If p is the length of the perpendicular from focus upon the tangent at any point P of the ellipse x2a2+y2b2=1 and r is the distance of P from the focus, then (2ar−b2p2) is equal to
Open in App
Solution
Equation of tangent at point P of ellipse x2a2+y2b2=1 is xcosθa+ysinθb=1 Given p is the distance of tangent from F2(ae,0) Then, p=|ecosθ−1|√cos2θa2+sin2θb2=|ecosθ−1|√cos2θa2+sin2θa2(1−e2)=a|ecosθ−1|√1−e2√1−e2cos2θ b2p2=a2(1−e2)(1−e2cos2θ)a2(1−ecosθ)2(1−e2)=1+ecosθ1−ecosθ⋯(i) Also, r is the distance of P(acosθ,bsinθ) from F2(ae,0) r=√(acosθ−ae)2+b2sin2θ=√(acosθ−ae)2+a2(1−e2)sin2θ=a(1−ecosθ) ⇒2ar=21−ecosθ⋯(ii) From (i) and (ii) ⇒2ar−b2p2=21−ecosθ−1+ecosθ1−ecosθ=1