If p is the product of the sines of angles of a triangle and q the product of their cosines, the tangents of the angle are roots of the equation
A
qx3−px2+(1+q)x−p=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
px3−qx2+(1+p)x−q=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(1+q)x3−px2+(1+q)x−p=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of the above
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bqx3−px2+(1+q)x−p=0 Here p=sinAsinBsinC and q=cosAcosBcosC ∴pq=tanAtanBtanC and tanAtanB+tanBtanC+tanCtanA =sinAcosAsinBcosB+sinBcosBsinCcosC+sinCcosCsinAcosA =sinAsinBcosC+sinBsinCcosA+sinCsinAcosBcosAcosBcosC =sinB(sinAcosC+cosAsinC)+sinCsinAcosBcosAcosBcosC =sinBsin(A+C)+sinCsinAcosBcosAcosBcosC =sinBsin(π−B)+sinCsinAcosBcosAcosBcosC =sin2B+sinCsinAcosBcosAcosBcosC =1−cos2B+sinCsinAcosBcosAcosBcosC =1−cosB(cosB−sinAsinC)cosAcosBcosC =1−cosB(cosB−sinAsinC)q =1−cosB(−cos(A+C)−sinAsinC)q =1+cosB(cosAcosC+sinAsinC−sinAsinC)q =1+cosAcosBcosCq 1+qq and tanA+tanB+tanC=tanAtanBtanC in a △ABC =pq ∴Required equation is x3−(pq)x2+(1+qq)x−pq=0 or qx3−px2+(1+q)x−p=0