If p=limx→∞(sin√x2+1−sin|x|) and q=limx→−∞[sin(cos(√|x|−x3)−1)]
(Where [.] denotes greatest integer function), then which of the following is/are correct:
A
p=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
q=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
p=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
q=−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bq=0 p=limx→∞(sin√x2+1−sin|x|) =limx→∞(sin√x2+1)−sinx =limx→∞2cos(√x2+1+x2)sin(√x2+1−x2) =limx→∞2cos(√x2+1+x2)sin(12√x2+1+x)=0 ⇒[∵cos(√x2+1+x2)is finite ∀x∈R] ∴p=0
Now, q=limx→−∞[sin(cos(√|x|−x3)−1)] ⇒q=limx→−∞[sin(cos(1√−(x+x3)))]. q=[sin(cos0)]=[sin1]=0