The correct option is C 3
We have,
p=log1020⇒10p=20 .......(i)
q=log1025⇒10q=25........(ii)
Now,
2log10(x+1)=2p−q
⇒log10(x+1)2=2p−q
⇒(x+1)2=102p−q
⇒(x+1)2=(10p)2.10−q
⇒(x+1)2=20225
⇒x2+1+2x−16=0
⇒x2+2x−15=0
⇒x2+5x−3x−15=0
⇒(x+5)(x−3)=0
Argument of log cannot be negative
So, x = 3
Hence, option c is correct.